AN ITERATIVE PROCEDURE FOR OUTLIER DETECTION IN GSTAR(1;1) MODEL

نویسندگان

چکیده

Outliers are observations that differ significantly from others can affect the estimation results in model and reduce estimator's accuracy. To deal with outliers is to remove data. However, sometimes important information contained outlier, so eliminating a misinterpretation. There two types of time series model, Innovative Outlier (IO) Additive (AO). In GSTAR spatial correlations also be detected. We introduce an iterative procedure for detecting model. The first step form without outlier factors. Furthermore, detection model's residuals. If detected, add factor into initial estimate parameters new residuals obtained process repeated by adding them until no As result, not removed or ignored but This paper presents case studies about Dengue Hemorrhagic Fever cases five locations West Kalimantan Province. These subject result this using detect based on residual provides better accuracy than regular (without model). It solved removing data factors way, critical id lost, accurate ore obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an application of equilibrium model for crude oil tanker ships insurance futures in iran

با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...

IterativeSOMSO: An Iterative Self-organizing Map for Spatial Outlier Detection

In this paper, we propose an iterative self-organizing map approach for spatial outlier detection (IterativeSOMSO). IterativeSOMSO method can address high dimensional problems for spatial attributes and accurately detect spatial outliers with irregular features. Detection of spatial outliers facilitates further discovery of spatial distribution and attribute information for data mining problems...

متن کامل

an appropriate model for exchange rate predictability in iran: comparing potential forecastability

nowadays in trade and economic issues, prediction is proposed as the most important branch of science. existence of effective variables, caused various sectors of the economic and business executives to prefer having mechanisms which can be used in their decisions. in recent years, several advances have led to various challenges in the science of forecasting. economical managers in various fi...

Spatial outlier detection based on iterative self-organizing learning model

In this paper, we propose an iterative self-organizing map (SOM) approach with robust distance estimation (ISOMRD) for spatial outlier detection. Generally speaking, spatial outliers are irregular data instances which have significantly distinct non-spatial attribute values compared to their spatial neighbors. In our proposed approach, we adopt SOM to preserve the intrinsic topological and metr...

متن کامل

An Outlier Detection-Based Alert Reduction Model

Intrusion Detection Systems (IDSs) are widely deployed with increasing of unauthorized activities and attacks. However they often overload security managers by triggering thousands of alerts per day. And up to 99% of these alerts are false positives (i.e. alerts that are triggered incorrectly by benign events). This makes it extremely difficult for managers to correctly analyze security state a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Barekeng

سال: 2022

ISSN: ['1978-7227', '2615-3017']

DOI: https://doi.org/10.30598/barekengvol16iss3pp975-984